TO:Crown:Majesta:GH-JZS175:JZS177:A650E:2JZ-FSE:D4:Cold start INJ:Fuel Line figure:61743:RJS10730:

TO:Crown:Majesta:GH-JZS175:JZS177:A650E:2JZ-FSE:D4:Cold start INJ:Fuel Line figure:61743:RJS10730: - 車QF - Yahoo!ブログ

イメージ 1

イメージ 1

TO:GH-JZS175:JZS177:A650E:2JZ-FSE:D4:Cold start INJ:Fuel Line figure:61743:RJS10730:

61743:新型車解説書:Crown:Majesta:
RJS10730

p1-148
コールドスタートインジェクター

この直6のD4には、Cold Start INJ:なる、懐かしい名称が目にとまった。

THW:10℃以下での作動とある。 10℃以下で始動性に関連することがあれば、ATSの対象に留意するとよいのだろう。 すでに、懐かしい初期の燃料噴射装置L-jetronicなどで始動性の悪い場合に対象になった部品と同じ名称で、機能も似たものだ、制御は当然これが売り出された当時のものが反映されているのだろう。
このD4もすでに古いタイプとなってしまったのだろうが。 


フューエルリリフバル
もp1-149に紹介されているが、作動圧は見当たらない。慨報に準じるということなら 14MPaとなる、
他の関連数値も他のD4と似ているので、ともかくそれを参考にしておこう。

 

 

f:id:TAS-net:20190904185638p:plain

 

 

 コメント(20)

  

顔アイコン

The original D4 3S-FSE 2.0-L I4 engine burns an ultra-lean mixture (as lean as a 50:1 air/fuel ratio) in a stratified-charge combustion zone. The new 2JZ-FSE does not take the lean-burn envelope that far, operating at an air/fuel ratio ranging from 20:1 to 40:1.

2012/3/15(木) 午前 7:29ogw*og*2

  

顔アイコン

In this zone, fuel is injected in the latter part of the engine's compression stroke by the new high-pressure slit-nozzle injector. Fuel mist forms a stable, combustible mixture (closer to the stoichiometric air/fuel ratio) stratum around the spark plug. The flame propagates to the ultra-lean mixtures around this stratum. The overall air/fuel ratio can be as lean as 40:1.

2012/3/15(木) 午前 7:29ogw*og*2

  

顔アイコン

The new 2JZ-FSE's stratified charge combustion envelope has been extended to a higher vehicle speed range of about 120 km/h, adequately covering Japan's real-life highway cruising. Fuel economy, quoted at 11.4 km/L (27 mpg) on Japan's urban 10/15 mode for the Royal, is about 21% superior to the previous port-injection model.

2012/3/15(木) 午前 7:30ogw*og*2

  

顔アイコン

At high-load conditions such as rapid acceleration and high-speed running, the engine operates in the stoichiometric zone with fuel injected during the intake stroke. One of the two straight intake ports is fitted with a flow-control valve, its opening and closing improving cylinder filling and combustion efficiency. During low-speed, high-load operation, this valve is fully closed, with the air admitted through the single open port, accelerating flow speed and improving cylinder filling.

2012/3/15(木) 午前 7:31ogw*og*2

  

顔アイコン

The flow-control valve is fully opened during high-speed, high-load operation, introducing ample air. A transient "weak stratified charge" zone, with an air/fuel ratio of 18:1 through 25:1, ensures a smooth transition between ultra-lean stratified-charge operation and homogeneous-charge combustion. Fuel is "split-injected" partially during the intake stroke and the remainder during the compression stroke.

2012/3/15(木) 午前 8:14ogw*og*2

  

顔アイコン

The first-generation D4 engine relies heavily on a powerful air-swirl motion generated by two different port shapes for each cylinder: a helical port with a small protrusion just before the intake valve opening and a straight port, the latter fitted with a swirl-control valve. During ultra-lean operation, this valve is closed, letting the air in from the helical port.

2012/3/15(木) 午前 8:16ogw*og*2

  

顔アイコン

Combined with the intricately shaped, asymmetrical deep-bowl piston, a combustible mixture strata is formed around the spark plug.

The new D4's ports are both straight, relying less on the air's swirl motion, and the piston's asymmetrical deep cavity is an elongated shape versus the original D4's heart-shaped cavity. The high-pressure plunger-type fuel injection pump is driven by the exhaust camshaft. It generates pressures between 8 and 13 MPa (1160 and 1890 psi).

2012/3/15(木) 午前 8:16ogw*og*2

  

顔アイコン

The new D4 employs a new "slit nozzle" injector. It has a single slit-like hole, an arched slit of only 0.16-mm (0.006-in) width. The slit nozzle injector fans out highly pressurized fuel spray, which forms a stable mist stratum around the spark plug without the aid of air turbulence. A cold-start injector feeds fuel into the plenum chamber to aid startability.

2012/3/15(木) 午前 8:17ogw*og*2

  

顔アイコン

A single stage cogged belt drives the exhaust camshaft. The exhaust camshaft carries a vane-type VVT-i continuously variable intake valve timing device and drives the intake camshaft via a split and spring-loaded "scissors" geartrain. The VVT-i has a variable timing range of 40°. The camshaft acts on valves via shimless bucket tappets.

2012/3/15(木) 午前 8:18ogw*og*2

  

顔アイコン

The intake and exhaust valves are inclined at a narrow included angle of 22.6°, vs. the port-injected 2JZ-GE's 45°. Valve diameters are 33.5 mm (1.32 in) for intake and 28.0 mm (1.10 in) for exhaust vs. the 2JZ-GE's 33.5 mm (1.32 in) and 29 mm (1.14 in), respectively. Lifts are 6.0 mm (0.24 in) for either engine type.

2012/3/15(木) 午前 8:18ogw*og*2

  

顔アイコン

The induction system employs a variable-length ACIS (acoustic control induction system) to exploit the incoming air's pulsation to obtain inertia charge effect. 
__________________
2001 Black Onyx IS300

http://www.clublexus.com/forums/gs-second-generation/15349-beams-d4-2jz-fse.html

2012/3/15(木) 午前 8:19ogw*og*2

  

顔アイコン

ACKNOWLEDGMENTS
Authors would like to acknowledge to the members of
Yamaha Motor Co., LTD., Nippon Soken Inc., Denso
Corporation and all other people who have helped us in
developing this new DISI engine.

2012/3/15(木) 午前 8:27ogw*og*2

  

顔アイコン

REFERENCES
1.

Sadakane, S., Sugiyama, M., Kishi, H., Harada, J.
and Sonoda, Y., “Development of a New V-6 High
Performance Stoihiometric Gasoline Direct Injection
Engine”, SAE Paper2005-01-1152, 2005.
2.

Kanda, M., Baika T., Kato, S. Iwamuro, M., Koike, M.,
and Saito, A., “Application of a New Combustion
Concept to Direct Injection Gasoline Engine”, SAE
Paper2000-01-0531, 2000.

2012/3/15(木) 午前 8:27ogw*og*2

  

顔アイコン

3.

Abe, S., Sasaki, K., Baika, T., Nakashima, T., and
Fujishiro, O., “Combustion Analysis on Piston Cavity
Shape of a Gasoline Direct Injection Engine”, SAE
Paper2001-01-2029, 2001.
4.

Yang, J. and Anderson, R.W., “Fuel Injection
Strategies to Increase Full-Load Torque Output of a
Direct-Injection SI Engine”, SAE Paper980495, 1998.

2012/3/15(木) 午前 8:29ogw*og*2

  

顔アイコン

5.

Takagi, Y., Ihoh, T., Muranaka, S., Iiyama, A., Iwakiri,
Y., Urushihara, T., and Naitoh, K., “Simultaneous
Attainment of Low Fuel Consumption High Output
Power and Low Exhaust Emissions in Direct
Injection SI Engines”, SAE Paper980149, 1998

6.

Anderson, R. W., Yang, J., Brehob, D. D., Vallance,
J. K. and Whiteaker, R. M., “Understanding the
Thermodynamics of Direct Injection Spark Ignition
(DISI) Combustion Systems: An Analytical and
Experimental Investigation”, SAE Paper 9

2012/3/15(木) 午前 8:30ogw*og*2

  

顔アイコン

7.

Lippert, A. M., El Tahry, S. H., Heubler, M. S.,
Parrish, S. E., Inoue, H. and Noyori, T.,
“Development and Optimization of a Small-
Displacement Spark-Ignition Direct-Injection Engine
– Full-Load Operation”, SAE Paper 2004-01-0034,
2004
8.

Baretzky, U., Andor, T., Diel, H. and Ullrich, W., “The
Direct Injection System of the 2001 Audi Turbo V8
Le Mans Engines”, SAE Paper 2002-01-3357, 2002.

2012/3/15(木) 午前 8:31ogw*og*2

  

顔アイコン

9.

Kinoshita, M., Saito, A., Matsushita, S., Shibata, H.,
and Niwa, Y., “A Method for Suppressing Formation
of Deposits on Fuel Injector for Direct Injection
Gasoline Engine”, SAE Paper 1999-01-3656, 1999.
10.

Landenfeld, T., Kufferath, A. and Gerhardt, J.,
“Gasoline Direct Injection – SULEV Emission
Concept”, SAE Paper 2004-01-0041, 2004.

2012/3/15(木) 午前 8:32ogw*og*2

  

顔アイコン

11.

Morita, K., Sonoda, Y., Kawase, T., and Suzuki, H.,
“Emission Reduction of a Stoichiometric Gasoline
Direct Injection Engine”, SAE Paper 2005-01-3687,
2005.

2012/3/15(木) 午前 8:33ogw*og*2

  

顔アイコン

2006-01-1259
Development of V-6 3.5-liter Engine Adopting
New Direct Injection System
Takuya Ikoma, Shizuo Abe, Yukihiro Sonoda and Hisao Suzuki
Toyota Motor Corporation
Yuichi Suzuki
Yamaha Motor Co., Ltd.
Masatoshi Basaki

2012/3/15(木) 午前 8:39ogw*og*2